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On the car parking problem 
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Received 16 April 1986 

Abstract. The radial distribution functions of randomly distributed one-dimensional 
spheres are studied. The differences between equilibrium fluids and sequentially construc- 
ted systems are discussed in terms of the corresponding configuration spaces and numerical 
simulations. It is shown that for the sequentially constructed systems, which correspond 
to the car parking problem, a ‘memory effect’ occurs, such that the sequential spheres are 
temporally distinguishable. Exact solutions for some simple cases and numerical simula- 
tions for large systems are shown, discussed and compared with the equilibrium fluid results. 

1. Introduction 

Models of rigid spheres in one, two and three dimensions, distributed more or less 
randomly in space, have been widely used as reference systems to represent a large 
variety of disordered physical situations: fluids, glasses, alloys, implanted systems, 
porous and granular materials, etc (e.g. Bernal 1964, Finney 1970, Ziman 1979). Of 
course the model has been employed with modifications appropriate to the systems 
under study, including spheres of diff erent diameters, charged or with other interaction 
potentials beyond the hard core, etc (e.g. Abramo et a1 1983, Singh and Holz 1983, 
Montroll and Lebowitz 1982). The properties studied include equations of state, 
thermodynamic functions and phase transitions, as well as two essentially geometrical 
aspects whose importance lies in their direct relationship with observable physical 
properties: the random close packing, in connection with the maximum density, and 
the radial distribution function, which is directly related to the structure factor and 
therefore to the microscopic description of the systems. 

However, even in the simplest version of rigid identical spheres, exact analytical 
solutions for the random close packing and the radial distribution function are limited 
to some one-dimensional cases: for two and three dimensions there are some good 
approximate solutions (Montroll and Lebowitz 1982), experimental results (Scott and 
Kilgour 1969, Stillinger et af 1964) and a growing number of numerical simulations 
(Alder and Wainwright 1959, 1960, McNeil and Madden 1982), not always totally 
concident. 

There are three main models of packing (Finney 1970). 
(i)  The ordered close packing of spheres of radius U admits geometrical definitions, 

with packing fractions 7 = 1, .rr/m and .rrlm for one, two and three dimensions. 
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(ii) The random loose packing may be defined, rather vaguely, as the packing 
‘observed by dumping ball bearings into a container and measuring the resulting density 
without shaking’ (Berryman 1983). In the absence of gravity, which obviously compli- 
cates a numerical simulation, one could define it as the packing resulting from a 
sequential introduction of spheres into the system, without relaxation, until it is 
geometrically impossible to introduce another sphere. With this definition the one- 
dimensional random loose packing corresponds to the densest car parking problem, 
and has an analytical solution with 7 = 0.7476 for infinite systems (Solomon 1964). 

(iii) The random close packing corresponds to an intermediate situation and is 
observed experimentally by dumping spheres into a container which is ‘conveniently 
shaken’ (Scott and Kilgour 1969). This shaking is defined experimentally and gravity 
plays an important role. Berryman (1983) has recently proposed a variety of possible 
theoretical definitions which lead to values of 17 which are attractively coincident 
between them and with experimental three-dimensional results (Scott and Kilgour 
1969). 

Recently, Roman and Majlis (1983), in the context of ion implantation, have studied 
a three-dimensional system of N randomly distributed rigid spheres. They performed 
numerical experiments using the following procedure: they considered a cubic box of 
volume L3, with a sphere of diameter (+ in its centre, and generated sequentially random 
numbers to define the position of the centres of subsequent spheres; if such a sphere 
overlaps previously existing ones, the point is rejected, and if not the sphere is 
incorporated into the system; no relaxation is allowed. Considering an ensemble of 
such systems, Roman and Majlis calculated the density of bodies around the central 
sphere and the corresponding radial distribution function, G( R ), associated with this 
non-equilibrium situation. The numerical experiments performed with packing 
densities 77 = rNu3/6L3 = 0.105, 0.209 and 0.314 show that G( R )  differs from those 
corresponding to fluids in thermodynamic equilibrium, GF( R ) ,  obtained from 
molecular dynamics calculations (Barker and Henderson 1971): G(u)  < GF(a) ,  and 
G ( R )  does not exhibit the characteristic oscillations of GF( R ) .  

Cohan and Weissmann (1983) also studied the radial distribution function of a 
system of randomly distributed rigid spheres, using a different, but apparently 
equivalent, method: the spheres are generated sequentially, without relaxation, as in 
the previous case, but no central sphere is included. Instead, periodic boundary 
conditions are imposed and the N (  N - 1)/2 relative distances between all pairs of 
spheres are considered to calculate G(  R ) .  Both generating procedures correspond, in 
one dimension, to the car parking problem. I t  is also worthwhile to note that these 
procedures, continued until maximum density is attained would yield the packing 
fraction corresponding to the random loose packing without gravity. 

In the present paper we will study a sequential system of randomly distributed 
rigid spheres without relaxation; we will try to clearly establish its differences with an 
equilibrium hard sphere fluid, and in particular focus our attention on a ‘memory’ or 
temporal distinguishability effect on the sequentially generated bodies, which is absent 
in equilibrium fluids. This situation occurs frequently in numerically simulated systems, 
and also in  physical systems with restricted relaxation; we will be interested in the 
radial distribution functions. For the sake of simplicity we will limit ourselves to the 
simplest one-dimensional systems, which we believe to be, in  this respect, qualitatively 
representative of general systems. 

The paper is organised as follows: in the next section we introduce the definitions 
needed to avoid ambiguities, in § 3 we rededuce some results for one-dimensional 
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equilibrium fluids, (i 4 is devoted to the car parking problem, in 0 5 we discuss numerical 
simulation methods and their results and in P 6 we present and discuss the results and 
draw some conclusions. 

2. Definitions 

In general, we will discuss one-dimensional systems of N rigid rods of length U located 
on a segment of length L; the rod centres may occupy sites in the interval L, = L - U. 

The distributions are symmetrical with respect to the centre of the segment, since both 
ends are equivalent; therefore these boundaries may be looked at as another (the 
zeroth) body of the system, imposing periodic boundary conditions with period L, = 
L +  U. Introducing a coordinate system with the centre of the zeroth body at Rb+ nL,, 
n =integer, the coordinates of the body centres (coordinates of the body) R :  may take 
values in the interval 

R&+ U =S R :  =S RA+ L, - U = RA+ L i = 1 , 2 ,  . . . ,  N 

and their translational equivalents. Due to the arbitrariness of the coordinate origin 
only N coordinates are independent and define the geometry of the problem: R, = 
RI-RA, V i  (Ro=O, see figure 1). For finite systems (L and N finite) the average 
density po and the packing fraction 7)o may have slightly different definitions, depending 
on if we use L, and N + 1 or L and N as the basic quantities; in this paper we will use 

P o = N l L  q0 = Nul L. (1 )  

For a rigid rod problem, where the interaction energy between rods i,j, is zero if 
( R I  - RI\ 5 U and infinite otherwise, the calculation of the radial distribution function 
is essentially a geometrical problem. It is useful to introduce an N-dimensional 
configuration space CN, in which every point ( R , ,  R 2 , .  . . , R N )  defines a possible 
geometry for the system; all the system’s properties are periodic in all coordinates RI  
with period L,. 

The volume of the configuration space corresponding to one period is 

v(c,)= L.,”=(L+#. ( 2 a )  

V , ( L , U ) = ( L - N ~ ) ~  ( 2 6 )  

The accessible volume, due to the condition IR, - R,I 5 U, is reduced to 

as can be seen by inspection or direct integration. 

0 R 
Figure 1. One-dimensional periodic rigid rod system with N = 6, L ,  = 12u. The accessible 
space for the seventh body, L , ,  is also shown. 
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3. The one-dimensional equilibrium fluid 

We define a finite equilibrium fluid as a system of N identical rods located on a 
segment of length L, with uniform probability density in the accessible configuration 
space. Given a configuration such that one body centre is located between R and 
R + A R ,  with ( k -  1 )  bodies on its left and the remaining ( N -  k )  on its right, the 
configuration space volume associated with it is 

where V k - , ( R  -a, a) and vN-k(L-  R, a) are given by ( 2 b )  and the factor N(:I;) 
comes from the different possibilities of choosing the right and left bodies. Since the 
equilibrium fluid configurations are uniformly distributed, the probability of finding 
the kth neighbour of the reference body at R is 

(4) P k  ( ) = A V ( k ,  R )/ARVN ( L ,  a).  

In terms of the packing fraction 70, we may write 

where 

and p k ( R )  is normalised in the interval (0, Lp). 
The radial distribution function is then 

According to ( 5 ) ,  the main peak of G L ( R )  at R = a takes the value 

G L ( a )  = 1 / ( 1  -To) V N. 

It can also be seen that the radial distribution function is symmetric, G L ( R ) =  
G ; ( L , - R ) .  In the case of only one rod ( N =  l ) ,  G:(R)=constant; for N = 2  it 
decreases linearly in the interval 06  R 4 2 a  and is constant for 3as R =s L, /2  (if 
L,> 6 a ) .  For N = 3 ,  G : ( R )  reaches a minimum for R = 2 a ,  already showing the 
typical oscillations of a liquid; for increasing values of N the number of oscillations 
increases, and in the limit for N + CO, L + CO ( T~ = constant), equations ( 5 )  and (6) lead 
to the well known expression (Ziman 1979) 

k = l  

10 otherwise. 
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4. The car parking problem 

As stated in the introduction, the car parking problem (CPP) may be defined through 
a numerical experiment. The zeroth body is placed at an arbitrary origin; the coordinates 
of the centres of the N following rods are introduced sequentially by the generation 
of random numbers, R i ,  in the interval U c Ri S L ,  - U, where L ,  is the period of the 
system. If the coordinate Ri fulfills the condition IRi - Rjl 2 a, j = 0, 1,2, . . . , i - 1, the 
rod is incorporated into the system; otherwise, the coordinate is rejected and new 
random numbers are generated until the condition above is met. In practice, the 
numbers are generated in the interval (0, l) ,  the origin is placed at -a and the period 
is L,= 1+2a .  

This sequential incorporation of bodies causes the system to be essentially different 
from an equilibrium fluid: in the CPP the rods are temporally distinguishable, i.e. they 
‘remember’ the order in which they were generated, giving rise to a non-equilibrium 
distribution in the configuration space. In order to illustrate this, let us take the simplest 
case: N = 2 ;  R I ,  R2 are the coordinates of the respective rod centres and the reference 
zeroth rod is at the origin. Figure 2 shows the corresponding configuration space; it 
is clear that, by definition, R I  may take any value in the accessible space L1,  with 
probability density 

where O ( R , ,  R 2 , .  . . , R k )  is defined in general as 

The accessible space for locating the second rod at R ,  depends on R I  (see figure 2 )  - 
and the corresponding probability density is 

P Z ( R ~ / R I )  = @ ( R I ,  Rz ) /L2(Ri )  

L p - 0  

2 0  

0 

Figure 2. Asymmetry and non-uniform distribution of points in configuration space of the 
two-body CPP. 
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with 

L , - ~ u -  RI u s R 1 S 2 u  

L,(R,)= L , - ~ u  2 0 s  R1S L , - ~ u  ( l o b )  i R I  - 2 ~  L , - 2 ~ s  RIG L,-U. 

The probability of a particular configuration ( R, ,  R,) is pI (R l )p2 (R2 /  R I ) ,  which 
is in general different from p l (R2)p2(R l /R2) ,  as shown in figure 2. This asymmetry 
indicates the non-equivalence of the bodies; therefore it is necessary to introduce 
different radial distribution functions for the different bodies. In general, the radial 
distribution function G,( R ) ,  R = JRi  - RjI, G,( R )  = Gji( R ) ,  indicates the spatial distri- 
bution of the j th  body around the ith body, i, j = 0, 1,2 , .  . . , N, indicating the order 
in which each body is introduced into the sample. The radial distribution function of 
rods about the ith one is 

Gi(R)  = ( 1 / N )  Gij(R) 
j t i  

and the average radial distribution function 
1 N  

G ( R )  =I G i ( R ) .  
N + l  i = o  

For the case N = 2 it is easy to see that Go, = LO(R,)/L, = constant and GO2(R)  = 
G12( R )  and therefore Go( R )  = G I (  R ) .  The expressions for Go,( R )  may be obtained 
by direct integration of the corresponding probability density over configuration space. 
The results depend on the relative magnitude of L, and U and are 

3aS LPC4u:  GO2(R)  = B ( R )  U S  R C L , - ~ u  
= 0 (impossible) L, - 2 ~  S R C 2u 

4 a s L P ~ 5 u :  G o 2 ( R ) = A ( R )  a C R C L P - 3 a  
= B ( R )  
= B ( R ) +  B(L,- R )  ~ u S R S L , - ~ U  

L , - ~ u  C R S 2~ 

5~ S L, C 60: Go*( R )  = A( R )  u S R s 2 a  
= A ( R ) + B ( L , -  R )  ~ u S R C L , - ~ U  
= B(R)+B(L , -  R )  L , - ~ u S  R S 3 u  

 US L,: G02(R) = A ( R )  u S R c 2 a  
= A ( R ) +  B(L,- R )  2 u s R S 3 u  
= A (  R ) +  A(L,- R )  3 ~ s  R S  L , - ~ u  

where 

A(  R )  = ( L P - 3 u  - R ) / (  L, -40) + ln[(L, - 3 a ) / ( L ,  - 4 4  

B ( R )  = In[( L,- 3 u ) / ( R  - U)]. (13b) 

The average number of random numbers to be generated is 

X( N = 2 )  = 2 + 2 In[ L, - 3 u ) / (  L, - 4 u ) ]  (14) 
except for the case L, 6 4u, where impossible situations may occur. 
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Similarly, for arbitrary N, the probability density of locating the ith rod at R, is 
e( R ,  , . , . , R i ) /  Li( R I ,  . . . , R i - , ) .  However, for increasing i, the expressions rapidly 
become extremely cumbersome and complicated; we have worked out in full the case 
of N = 3; the formulae are already very lengthy and will not be given here, although 
some results are discussed in § 6. It is probably not worthwhile to pursue the procedure 
further, and unfortunately we have not been able to find general expressions for 
arbitrary values of N, nor for N + w .  

5. Numerical simulations 

Since general analytical solutions for the radial distribution functions of the car parking 
problem are not available, we must rely on numerical simulations to study general 
systems. It is clear that the rejection rate for the body coordinates will increase rapidly 
with the packing densities, and there will be ‘impossible’ or ‘nearly impossible’ configur- 
ations for densities well below the maximum vo = 0.7476, i.e. N’ < N bodies will occupy 
all, or almost all, the available space; this will produce the necessity of generating and 
checking very many random numbers. 

We have found that an alternative simulation method is completely equivalent to 
that described in the previous section. In order to build up a system, only N random 
numbers are generated; the first body is located as usual. For successive bodies, the 
accessible space is calculated and the corresponding random number is renormalised 
accordingly; the body is then located at this position in the accessible space. In this 
way, impossible samples are easily detected-and rejected-through the condition that 
the available space must be larger than zero. The numerical examples given in the 
next section were calculated using this procedure, since we verified that, in that 
particular case, it was about 20% faster than the usual simulation method; the prefera- 
bility of either will depend, of course, on the density of the system. It is worthwhile 
to note that, although from the numerical simulation point of view both methods yield 
identical results, they would seem to represent quite different physical situations. Let 
us think, stressing somewhat the imagination, of a one-dimensional ion implantation. 
In the usual picture, if an ion finds the site it is directed to occupied, it simply 
evaporates; in the ‘accessible space’ picture, it just goes on until it finds some free 
space, a much more reasonable behaviour. Although the translation of our alternative 
simulation method to two or three dimensions poses serious practical problems, it 
seems to us that the above interpretation lends some additional credibility to the 
random sphere model of ion implantation. 

Equilibrium fluids may also be obtained through a random number simulation. In  
this case, N random numbers are generated and the sample is checked for overlapping; 
if any occurs, the sample is rejected as a whole, and another set of N numbers is 
generated. It is clear that the ‘memory effect’ of the CPP does not exist any more, since 
all bodies are perfectly equivalent; we have verified in some simple cases that this 
simulation method fully coincides with the analytical results of (6). 

6. Results and discussion 

Figure 3 shows the radial distribution functions G i ( R )  for two simple cases of the car 
parking problem, N = 2, L, = 6a and N = 3, L,  = 65a, obtained from the analytical 
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2.0 

1.5 

1.0 w 
1 2 3 3  2 1 

R l o  

Figure 3. CPP radial distribution functions for (a)  N = 2 ,  L , = 6 o ;  ( b )  N = 3 ,  L,=6.50. 
Broken line: calculated from the exact solutions; full line: numerical simulations. 

solution and from numerical simulations; all functions are normalised as 

loLp G ( R )  dR = L1 

It can be seen that the agreement is excellent, as it should be. In figure 3 ( a ) ,  G l ( R )  
and G,( R )  decrease in the interval 2a S R S 3a, while for the equilibrium fluid with 
N = 2, G F ( R )  =constant (see ( 6 ) ) .  In figure 3 ( b )  we have omitted, for the sake of 
clarity, Go( R )  = G I (  R )  which is almost indistinguishable from G,( R )  (see figure 4); 
the characteristic minima of the radial distribution functions at R = 2a clearly appear 
already for N = 3. Figure 4 shows the analytical results for N = 3, L, = 6 . 5 ~  in detail. 
It should be noted that each G,(R) depends only on the ratio L,/a, and not on the 
total number of bodies in the system. In general, by construction, Goj(R) = G l j ( R ) ,  
V j >  1, and therefore Go(R) = G , ( R ) .  It is seen that G i ( a )  grows with i and so do the 
amplitudes of the corresponding oscillations. 

In figure 5 ,  we compare the results of the CPP and the finite equilibrium fluid. 
G F ( R )  is intermediate between the average radial distribution C ( R )  and G,(R).  In 
this case, GF( R )  is constant for R > 3a, while C( R )  oscillates until R = 5 0 ;  this long 
range of the radial distribution function oscillations seems to be a general feature of 
the CPP. 

Figure 6 shows the results of a numerical simulation performed on 20 000 samples 
with N = 2 4 ,  L P = 4 2 a  and a channel width of 0120; a simulation performed with 
N = 12 and the same density yields statistically identical results. 

It may be observed that the general results are qualitatively similar to those obtained 
for N = 3. Although G ( R )  is not too different from G,(R) ,  it can be better approxi- 
mated by a G i ( R )  with i = fN. The ‘memory effect’ gets more pronounced for values 
of i>$N; this can be observed in figure 7, which shows Gi(a)  as a function of i. I t  
is to be noted that, for low densities, this effect is minimal and actually the equilibrium 
fluid and the car parking systems tend to be identical, whereas for maximum densities 



On the car parking problem 1201 

- Gz ;' 
- -  G3 

Gq : - 2  

' G  

-1 

*. 
* #  . #  '. ' .__f 

#I 
r 

3 2 1 
R l o  

Figure 4. Calculated CPP radial distribution functions for N = 3, L, = 6 . 5 ~ .  

i -- 
1 2 3 

R i o  

Figure 5. Calculated radial distribution functions for the finite equilibrium fluid and CPP. 
N = 3 ,  L , = 6 . 5 ~ .  (-, G3; ---, GI,,; . . . , G.) 

corresponding to the loose packing problem the Gi( R )  are most sensitive to the order 
in which the bodies have been introduced in the system. 

So far, we have been concerned with one-dimensional systems; however, the 
qualitative results probably hold also for two and three dimensions. It is clear now 
that the apparently similar numerical experiments of Roman and Majlis (1983) and 
Cohan and Weissmann (1983), mentioned in 6 1, are essentially different. Whereas 
the computation of all distances to a central sphere yields G,,(R), the calculation which 
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1 2 3 
R i o  

Figure 6. Calculated radial distribution for the finite equilibrium fluid and numerical 
simulation of some radial distribution functions for the CPP. N = 24, L, = 42u; 20 000 
samples, channel width: u/20 .  (. , , . , G,,q; ---, G,; 3 G 2 4 ,  ’ -9 G.) 

takes into account all possible distances among spheres in the sample gives G ( R ) .  
Although it is probably more appropriate in general to use G ( R ) ,  it must be kept in 
mind that if the properties of interest are fast varying functions of R, both approaches 
may give rise to erroneous results and the contribution of each G , ( R )  should be 
considered separately. 

Another important result, regarding binary mixtures of random spheres (frequently 
used to represent alloys) is implicit in the existence of the ‘memory effect’: even if the 
radii of the two types of spheres are similar, the arrangement will be highly dependent 
on the way in which the binary system was constructed. 

In conclusion, the difference between equilibrium fluids and random sphere systems 
is clearly established and may be equated to the absence or presence of ‘memory effect’, 
or temporal indistinguishability or distinguishability of the bodies. 

Of course relaxation or interaction between the bodies will take the non-equilibrium 
random system to the equilibrium fluid. However one could pose the question: to 
what extent will ‘appropriate shaking’ whether mechanical or numerically simulated, 
of very dense systems like the loosely packed system, completely erase the memory 
effect? In that sense, it is probable that the best approximation to the random close 
packing problem would come from the compression of equilibrium fluids (Visscher 
and Bolsteri 1972, Anonymous 1972). 
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Figure 7. Maxima of the radial distribution functions, G,(o) ,  as a function of the sequential 
order i. 

Very recently, two papers regarding stable two-dimensional random packing have 
appeared (Williams 1985, Uhler and Shilling 1985). The systems under study are 
clusters of identical discs, where the central one is in contact with three, four or five 
discs. It is clear that this problem is trivially mapped onto a one-dimensional periodic 
system with L, = 6a, to which all the formalism and conclusions of this paper may be 
applied. Work on the influence of ‘memory effects’ on this problem has been completed 
(Burgos and Bonadeo 1986). 
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